Crystallographic Data on Ammonium Dioxovanadium(V) Bisoxalate Dihydrate by the X-Ray Powder Method

By D. N. SATHYANARAYANA and C. C. PATEL

(Received November 19, 1964)

Recently, we reported a new method for the preparation of ammonium dioxovanadium-(V) bisoxalate dihydrate, (NH₄)₃[VO₂(C₂O₄)₂]. 2H₂O, its physico-chemical properties and its structure.1) X-Ray diffraction studies have now been carried out on the powdered crystals, and the crystal system and the unit cell parameters have been determined. The crystals of the complex were prepared in the manner reported earlier.¹⁾ The crystals were then powdered to nearly a 300-mesh size and filled in a 0.5 mm. (inner diameter) Lindemann glass capillary. The X-ray diffraction pattern of the powdered substance was taken with a 114.6 mm. Philips Powder Camera using nickel-filtered CuK_{α} radiation (1.5418 Å) at 34 kV. and 18 mamp. at 25°C. The exposure time was six

The complex crystallized from aqueous solutions on a microscopic slide at the laboratory temperature, when viewed under a polarising microscope, gave straight extinctions, and the optic axis figure showed the biaxial nature of the crystals. The crystal growth also clearly demonstrated that the lengths of the edges were unequal. These observations point to the possibility of an orthorhombic system for the compound. Microscopic examination further showed a prismatic type of crystals with domed faces. Five faces, (100), (010), (001), (110), and (101), appeared to be present. The powder pattern was indexed for an orthorhombic system using Hesse-Lipson's procedure;2) the observed and calculated $\sin^2 \theta$ values, together with the visually-assigned relative intensities of the lines, are given in Table I. The results show that the observed and computed $\sin^2 \theta$ values for the orthorhombic system compare well. The values for the unit cell parameters are: a=15.75 Å, b=11.09 Å, and c=8.015 Å, as calculated from the observed $\sin^2 \theta$ values of the first three lines, the volume of the unit cell being 1400Å3. The density of the crystals was found to be 1.665 g. ml⁻¹ at 25°C, using carbon tetrachloride. Using this density, the

TABLE I. X-RAY POWDER DATA OF $(NH_4) \circ [VO \circ (C \circ O_4) \circ] \cdot 2H \circ O$

$(NH_4)_3[VO_2(C_2O_4)_2] \cdot 2H_2O$				
Line No.	$\sin^2 \theta$ obs.	$\sin^2 \theta$ calcd.	hkl	Relative intensity
1	0.00959	0.00961	200	75
2	0.01166	0.01165	101	100
3	0.01442	0.01445	210	35
4	0.01660	0.01650	111	35
5	0.01900	0.01937	020	25
6	0.02393	0.02373	211	40
7	0.02896	0.02899	220	40
8	0.03105	0.03093	121	55
9	0.03568	0.03573	3 1 1	15
10	0.03837	0.03845	400	15
11	0.04113	0.04100	320	15
12	0.04422	0.04424	112	25
13	0.05030	0.05025	3 2 1	55
14	0.05267	0.05254	411	15
15	0.05620	0.05636	022	65
16	0.06686	0.06707	421	55
17	0.07461	0.07417	5 1 1	45
18	0.07969	0.07990	140	20
19	0.08314	0.08299	1 3 2	25
20	0.08642	0.08651	600	15
21	0.09090	0.09047	113	25
22	0.09656	0.09636	241	20
23	{0.1047 {0.1047	0.1048 0.1050	$\begin{cases} 3 & 0 & 3 \\ 1 & 2 & 3 \end{cases}$	10
24	0.1100	0.1097	3 1 3	20
25	0.1169	0.1169	142	15
26	0.1261	0.1265	413	20
27	{0.1369 (0.1369	0.1373 0.1364	$070 \ 223$	45
28	0.1410	0.1411	423	20
29	0.1733	0.1732	820	20
30	0.1829	0.1824	3 4 3	20
31	0.1916	0.1913	414	20
32	0.2068	0.2067	153	15
33	0.2141	0.2139	253	15
34	0.2218	0.2221	461	15
35	{0.2425 {0.2425	0.2428 0.2422	$\frac{453}{373}$	15
36	0.2473	0.2471	3 4 4	15
37	0.2794	0.2792	363	15
38	0.2961	0.2961	5 1 5	15
39	0.3073	0.3069	374	15
40	0.3251	0.3249	164	15

a=15.75 Å, b=11.09 Å, c=8.015 Å; $\alpha = \beta = \gamma = 90^{\circ}$

¹⁾ D. N. Sathyanarayana and C. C. Patel, This Bulletin,

<sup>37, 1736 (1964).
2)</sup> R. W. M. D'Eye and E. Wait, "X-ray Powder Photography," Butterworths Scientific Publications, London (1960), pp. 88-92.

number of formula units of the complex per unit cell was found to be 4.02 = 4.

The authors thank Drs. J. Shanker and M. D. Kharkhanwala for providing facilities for the X-ray work.

Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore-12, India